miércoles, 26 de febrero de 2014

Tipos de cable de red.

Cable coaxial:

Estos cables se caracterizan por ser fáciles de manejar, flexibles, ligeros y económicos. Están compuestos por hilos de cobre, que constituyen en núcleo y están cubiertos por un aislante, un trenzado de cobre o metal y una cubierta externa, hecha de plástico, teflón o goma.
A diferencia del cable trenzado (que se explicará a continuación) resiste más a las atenuaciones e interferencias. La malla de metal o cobre se encarga de absorber aquellas señales electrónicas que se pierden para que no se escapen datos, lo que lo hace ideal para transmitir importantes cantidades de estos a grandes distancias. Los cables coaxiales se pueden dividir en Thinnet, que son cables finos, flexibles y de uso sencillo. Por otro lado, están los cables gruesos, llamados Thicknet. Estos resultan más rígidos y su núcleo es más ancho que el anterior, lo que permite trasferir datos a mayores distancias. Los cables thicknet resultan más difíciles de instalar y usar, así como también son más costosos, pero permite transportar la señal a mayores distancias. Ambos cables cuentan con un conector llamado BNC, para conectar los equipos y cables.
Los cables coaxiales son ideales para transmitir voz, datos y videos, son económicos, fáciles de usar y seguros.


Cables de par trenzado:

Estos cables están compuestos por dos hilos de cobre entrelazados y aislados y se los puede dividir en dos grupos: apantallados (STP) y sin apantallar (UTP). Estas últimas son las más utilizadas en para el cableado LAN y también se usan para sistemas telefónicos. Los segmentos de los UTP tienen una longitud que no supera los 100 metros y está compuesto por dos hilos de cobre que permanecen aislados. Los cables STP cuentan con una cobertura de cobre trenzado de mayor calidad y protección que la de los UTP. Además, cada par de hilos es protegido con láminas, lo que permite transmitir un mayor número de datos y de forma más protegida. Se utilizan los cables de par trenzado para LAN que cuente con presupuestos limitados y también para conexiones simples.



Cables de fibra óptica:

Estos transportan, por medio de pulsos modulados de luz, señales digitales. Al transportar impulsos no eléctricos, envían datos de forma segura ya que, como no pueden ser pinchados, los datos no pueden ser robados. Gracias a su pureza y la no atenuación de los datos, estos cables transmiten datos con gran capacidad y en poco tiempo.
La fibra óptica cuenta con un delgado cilindro de vidrio, llamado núcleo, cubierto por un revestimiento de vidrio y sobre este se encuentra un forro de goma o plástico. Como los hilos de vidrio sólo pueden transmitir señales en una dirección, cada uno de los cables tiene dos de ellos con diferente envoltura. Mientras que uno de los hilos recibe las señales, el otro las transmite. La fibra óptica resulta ideal para la transmisión de datos a distancias importantes y lo hace en poco tiempo.



Cable cruzado:
El cable cruzado es utlizado para conectar dos PCs directamente o equipos activos entre si, como hub con hub, con switch, router, etc. Un cable cruzado es aquel donde en los extremos la configuracion es diferente. El cable cruzado, como su nombre lo dice, cruza las terminales de transmision de un lado para que llegue a recepcion del otro, y la recepcion del origen a transmision del final. Para crear el cable de red cruzado, lo unico que deberá hacer es ponchar un extremo del cable con la norma T568A y el otro extremo con la norma T568B.



Cable directo o recto:
El cable recto es sencillo, solo hay que tener la misma norma en ambos extremos del cable. Esto quiere decir, que si utilizaste la norma T568A en un extremo del cable, en el otro extremo tambien debes aplicar la misma norma T568A. Este tipo de cables es utilizado para conectar computadores a equipos activos de red, como Hubs, Switchers, Routers.


lunes, 24 de febrero de 2014

Modelo ISO.

El modelo de Interconexión de Sistemas Abiertos (OSI, Open System Interconection) lanzado en 1984 fue el modelo de red descriptivo creado por ISO. Proporcionó a los fabricantes un conjunto de estándares que aseguraron una mayor compatibilidad e interoperabilidad entre los distintos tipos de tecnología de red producidos por las empresas a nivel mundial.

Siguiendo el esquema de este modelo se crearon numerosos protocolos que durante muchos años ocuparon el centro de la escena de las comunicaciones informáticas. El advenimiento de protocolos más flexibles, donde las capas no están tan demarcadas y la correspondencia con los niveles no es tan clara, puso a este esquema en un segundo plano. Sin embargo sigue siendo muy usado en la enseñanza como una manera de mostrar como puede estructurarse una "pila" de protocolos de comunicaciones.



El modelo en sí mismo no puede ser considerado una arquitectura, ya que no especifica el protocolo que debe ser usado en cada capa, sino que suele hablarse de modelo de referencia. Este modelo está dividido en siete niveles:


Capa 7:
La capa de aplicación La capa de aplicación es la capa del modelo OSI más cercana al usuario; suministra servicios de red a las aplicaciones del usuario. Difiere de las demás capas debido a que no proporciona servicios a ninguna otra capa OSI, sino solamente a aplicaciones que se encuentran fuera del modelo OSI. Algunos ejemplos de aplicaciones son los programas de hojas de cálculo, de procesamiento de texto y los de las terminales bancarias. La capa de aplicación establece la disponibilidad de los potenciales socios de comunicación, sincroniza y establece acuerdos sobre los procedimientos de recuperación de errores y control de la integridad de los datos. Si desea recordar a la Capa 7 en la menor cantidad de palabras posible, piense en los navegadores de Web.


Capa 6:
La capa de presentación La capa de presentación garantiza que la información que envía la capa de 
aplicación de un sistema pueda ser leída por la capa de aplicación de otro. De ser necesario, la capa de 
presentación traduce entre varios formatos de datos utilizando un formato común. Si desea recordar la Capa 6 
en la menor cantidad de palabras posible, piense en un formato de datos común.


Capa 5:
La capa de sesión Como su nombre lo implica, la capa de sesión establece, administra y finaliza las 
sesiones entre dos hosts que se están comunicando. La capa de sesión proporciona sus servicios a la capa de 
presentación. También sincroniza el diálogo entre las capas de presentación de los dos hosts y administra su 
intercambio de datos. Además de regular la sesión, la capa de sesión ofrece disposiciones para una eficiente 
transferencia de datos, clase de servicio y un registro de excepciones acerca de los problemas de la capa de 
sesión, presentación y aplicación. Si desea recordar la Capa 5 en la menor cantidad de palabras posible, piense 
en diálogos y conversaciones.


Capa 4:
La capa de transporte La capa de transporte segmenta los datos originados en el host emisor y los 
reensambla en una corriente de datos dentro del sistema del host receptor. El límite entre la capa de transporte 
y la capa de sesión puede imaginarse como el límite entre los protocolos de aplicación y los protocolos de flujo 
de datos. Mientras que las capas de aplicación, presentación y sesión están relacionadas con asuntos de 
aplicaciones, las cuatro capas inferiores se encargan del transporte de datos.
La capa de transporte intenta suministrar un servicio de transporte de datos que aísla las capas superiores de 
los detalles de implementación del transporte. Específicamente, temas como la confiabilidad del transporte entre 
dos hosts es responsabilidad de la capa de transporte. Al proporcionar un servicio de comunicaciones, la capa 
de transporte establece, mantiene y termina adecuadamente los circuitos virtuales. Al proporcionar un servicio 
confiable, se utilizan dispositivos de detección y recuperación de errores de transporte. Si desea recordar a la 
Capa 4 en la menor cantidad de palabras posible, piense en calidad de servicio y confiabilidad.


Capa 3:
La capa de red La capa de red es una capa compleja que proporciona conectividad y selección de ruta 
entre dos sistemas de hosts que pueden estar ubicados en redes geográficamente distintas. Si desea recordar la Capa 3 en la menor cantidad de palabras posible, piense en selección de ruta, direccionamiento y 
enrutamiento. 


Capa 2:
La capa de enlace de datos La capa de enlace de datos proporciona tránsito de datos confiable a 
través de un enlace físico. Al hacerlo, la capa de enlace de datos se ocupa del direccionamiento físico 
(comparado con el lógico) , la topología de red, el acceso a la red, la notificación de errores, entrega ordenada 
de tramas y control de flujo. Si desea recordar la Capa 2 en la menor cantidad de palabras posible, piense en 
tramas y control de acceso al medio.


Capa 1:
La capa física La capa física define las especificaciones eléctricas, mecánicas, de procedimiento y 
funcionales para activar, mantener y desactivar el enlace físico entre sistemas finales. Las características tales 
como niveles de voltaje, temporización de cambios de voltaje, velocidad de datos físicos, distancias de 
transmisión máximas, conectores físicos y otros atributos similares son definidos por las especificaciones de la 
capa física. Si desea recordar la Capa 1 en la menor cantidad de palabras posible, piense en señales y medios.



Clasificación de dispositivos de interconexión de redes.

Repetidores.

Un repetidor es un dispositivo electrónico que opera sólo en el nivel físico del modelo OSI, las señales que transportan información pueden viajar a una distancia fija antes de que la atenuación dañe la integridad de los datos, el repetidor instalado en un enlace recibe la señal antes de que sea demasiado débil o corrupta, regenera el patrón de bits original y coloca la copia refrescada de nuevo en el enlace





Un repetidor sólo permite extender la longitud física de la red, el repetidor no cambia de ninguna forma la funcionalidad de la red.
El repetidor no es un amplificador puesto que lo que hace es regenerar la señal, es decir, eliminar el ruido y la atenuación, y crea una copia bit a bit con la potencia original (sin ruido).





Puentes.

Los puentes actúan en los niveles físico y de enlace de datos del modelo OSI. Los puentes pueden dividir dividir una red grande en segmentos más pequeños. También pueden retransmitir tramas entre dos redes originalmente separadas, y contienen lógica que permite separar el tráfico de cada segmento, de forma que pueden filtrar el tráfico por lo que son útiles para controlar y aislar enlaces con problemas, contribuyendo a la seguridad de la red. 


Un puente actúa en el nivel de enlace de datos dándole acceso a las direcciones físicas de todos los dispositivos conectados a él. Cuando la trama entra en el puente, éste la regenera tal como lo hace el repetidor y comprueba la dirección de destino y manda la nueva copia al segmento donde se encuentra el destino, el puente comprueba la dirección destino de la trama entrante y la compara con un a tabla de direcciones de las estaciones en ambos segmentos para encaminarla al segmento adecuado.
Tipos de puentes.

Puente simple: el puente simple enlaza dos segmentos y contiene una tabla que almacena todas las direcciones en cada uno de ellos, pero las direcciones han de introducirse manualmente, por lo que, al añadir o eliminar una nueva estación, hay que introducir su dirección o quitarla.

Puente multipuerto: este puente conecta más de dos segmentos y la tabla añade a las direcciones el número del puerto del segmento en que están


Puente transparente: este puente construye su tabla automáticamente, cuando se instala la tabla está vacía, al llegar un paquete analiza la dirección origen y destino, la dirección origen entra en la tabla junto con el segmento al que pertenece, así va llenando la tabla, si la dirección destino aún no la tiene en la tabla, retransmite el paquete a todos los dispositivos. Esta función de autoaprendizaje sirve para actualizar la tabla si se añaden o quitan dispositivos e incluso si cambian de posición.

Un puente que conecte dos redes debería ser capaz aunque utilizen protocolos diferentes en el nivel de enlace de datos, sin embargo hay otros problemas a considerar:

Formato de la trama: protocolos diferentes usan formatos diferentes.
Tamaño de la carga: el tamaño de los datos de la trama puede ser diferente.
Tasa de datos: los protocolos diferentes pueden usar tasas diferentes.
Orden de los bits de dirección: los bits de dirección pueden cambiar de un protocolo a otro.
Otros problemas: confirmaciones, colisiones, prioridades.





Encaminadores.

Los escaminadores tienen acceso a las direcciones del nivel de red y contienen software que permite determinar cual de los posibles caminos entre esas direcciones es el mejor para cada transmisión determinada. Los encaminadores actúan en los niveles físico, de enlace de datos y de red del modelo OSI. 



Los encaminadores retransmiten los paquetes entre múltiples redes interconectadas, encaminan paquetes de un dispositivo situado en una red a otro situado en otra red, para ello el paquete es enviado primero al encaminador que une las dos redes. Un encaminador actúa como una estación en la red pero, al pertenecer a dos o más redes, tienen direcciones y enlaces a todas ellas. Cuando un encaminador recibe un paquete para una estación de una red a la que no está conectado, el encaminador es capaz de determinar cuál de las redes a que está conectado es la mejor para retransmitir el paquete.

Para encaminar adecuadamente los paquetes, hay varios conceptos aplicados:

Encaminamiento con coste mínimo: Se basa en la eficiencia: ¿cuál es el más barato o el más corto? La evaluación de eficiencia incluye conceptos como rapidez, distancia, número de retransmisiones o saltos, enlaces fiables. Uno de los mecanismos es el contador de saltos, en que cada enlace se considera de igual longitud y valor, el encaminador entonces evaluará el número de saltos necesarios y elige. En otras ocasiones se valoran otras cualidades como la congestión del tráfico o el medio del enlace.





Pasarelas.

Las pasarelas actúan en todos los niveles del modelo OSI, actuando como un auténtico convertidor de protocolos, pudiendo aceptar un paquete en un protocolo y retransmitirlo en otro.


Una pasarela es generalmente un software instalado en un encaminador, que comprende los protocolos utilizados por cada red enlazada, y es capaz de traducir de un protocolo a otro modificando cabeceras y colas del paquete e incluso la tasa de datos, el tamaño y el formato.




Otros dispositivos para interconectar redes.

Encaminadores multiprotocolo: En el nivel de red, un encaminador es un dispositivo de un único protocolo, es decir enlaza redes del mismo protocolo debido a que cada protocolo usa una únicac tabla de direccionamiento, sin embargo existen encaminadores multiprotocolo capaces de unir redes que usan diferentes protocolos, el encaminador tendrá entonces una tablas de direccionamiento por cada protocolo.

Puentes encaminadores: un encaminador de un único protocolo que actúa como un puente, de forma que cuando recibe un paquete que no use direcciones de nivel de red, actúa como puente y si recibe direcciones de red como encaminador.

Conmutadores: es un dispositivo que ofrece la funcionalidad de un puente con mayor eficiencia, para ello tiene una memoria interna o buffer que almacena la trama recibida, comprueba su dirección destino y, si el enlace de salida no está libre, lo conserva hasta que se libere el enlace.

Conmutadores de encaminamiento: funcionan como los anteriores pero con las direcciones de red.

lunes, 17 de febrero de 2014

Principales componentes de una red.

Las redes se componen de los siguientes elementos:



Servidores:


Los servidores de ficheros conforman el corazón de la mayoría de las redes. Se trata de ordenadores con mucha memoria RAM, un enorme disco duro (o varios) y una rápida tarjeta de red. El sistema operativo de red se ejecuta sobre estos servidores así como las aplicaciones compartidas.





Estaciones de trabajo:


Son los ordenadores conectados al servidor. Las estaciones de trabajo no han de ser tan potentes como el servidor, simplemente necesitan una tarjeta de red, el cableado pertinente y el software necesario para comunicarse con el servidor. Una estación de trabajo puede carecer de disquetera y de disco duro y trabajar directamente sobre el servidor. Prácticamente cualquier ordenador puede actuar como una estación de trabajo.




Tarjeta de Red:


La tarjeta de red (NIC) es la que conecta físicamente al ordenador a la red. Son tarjetas que se pinchan en el ordenador como si de una tarjeta de video se tratase o cualquier otra tarjeta. Puesto que todos los accesos a red se realizan a través de ellas se deben utilizar tarjetas rápidas si queremos comunicaciones fluidas.







Conectores LocalTalk:


Se utilizan para ordenadores Mac, conectándose al puerto paralelo. En comparación con Ethernet la velocidad es muy baja, de 230KB frente a los 10 o 100 MB de la primera.





Tarjetas Token Ring:


Son similares a las tarjetas Ethernet aunque el conector es diferente. Suele ser un DIN de nueve pines.





Concentradores o Hubs:







Un concentrador o Hub es un elemento que provee una conexión central para todos los cables de la red. Los hubs son "cajas" con un número determinado de conectores, habitualmente RJ45 más otro conector adicional de tipo diferente para enlazar con otro tipo de red. Los hay de tipo inteligente que envian la información solo a quien ha de llegar mientras que los normales envian la información a todos los puntos de la red siendo las estaciones de trabajo las que decidirán si se quedan o no con esa información. Están provistos de salidas especiales para conectar otro Hub a uno de los conectores permitiendo así ampliaciones de la red.






Repetidores:





Cuando una señal viaja a lo largo de un cable va perdiendo "fuerza" a medida que avanza. Esta pérdida de fuerza puede desembocar en una pérdida de información. Los repetidores amplifican la señal que reciben permitiendo así que la distancia entre dos puntos de la red sea mayor que la que un cable solo permite.












Bridges:


Los bridges se utilizan para segmentar redes grandes en redes más pequeñas. De esta forma solo saldrá de la red pequeña el tráfico destinado a otra red pequeña diferente mientras que todo el tráfico interno seguirá en la misma red. Con esto se consigue una reducción del tráfico de red.




Routers:


Un router dirige tráfico de una red a otra, se podría decir que es un bridge superinteligente ya que es capaz de calcular cual será el destino más rápido para hacer llegar la información de un punto a otro. Es capaz también de asignar diferentes preferencias a los mensajes que fluyen por la red y enrutar unos por caminos más cortos que otros así como de buscar soluciones alternativas cuando un camino está muy cargado.




Mientras un bridge conoce la dirección de las computadoras a cada uno de sus extremos un router conoce la dirección tanto de las computadoras como de otros routers y bridges y es capaz de "escanear" toda la red para encontrar el camino menos congestionado.




Cortafuegos o Firewalls:


Un firewall es un elemento de seguridad que filtra el tráfico de red que a él llega. Con un cortafuegos podemos aislar un ordenador de todos los otros ordenadores de la red excepto de uno o varios que son los que nos interesa que puedan comunicarse con él. 

Clasificación de redes de computadoras. LAN, MAN, WAN.

Las redes de computadoras se clasifican por su tamaño, es decir la extensión física en que se ubican sus componentes, desde un aula hasta una ciudad, un país o incluso el planeta.
Dicha clasificación determinará los medios físicos y protocolos requeridos para su operación, se definen en tres tipos:


       


Redes de Area Amplia o WAN (Wide Area Network):

Esta cubre áreas de trabajo dispersas en un país o varios países o  continentes. Para lograr esto se necesitan distintos tipos de medios: satélites, cables interoceánicos, radio, etc.. Así como la infraestructura telefónica de larga distancias existen en ciudades y países, tanto de carácter público como privado.


Características:
  • Posee máquinas dedicadas a la ejecución de programas de usuario (hosts).
  • Una subred, donde conectan varios hosts.
  • División entre líneas de transmisión y elementos de conmutación (enrutadores).




Redes de Area Metropolitana o MAN (Metropolitan Area Network):

Tiene cubrimiento en ciudades enteras o partes de las mismas. Su uso se encuentra concentrado en entidades de servicios públicos como bancos.

Características:

  • Son redes que se extienden sobre áreas geográficas de tipo urbano, como una ciudad, aunque en la práctica dichas redes pueden abarcar un área de varias ciudades.
  • Son implementadas por los proveedores de servicio de Internet, que son normalmente los proveedores del servicio telefónico. 
  • Estos estándares soportan tasas de transferencia de varios gigabits (hasta decenas de gigabits) y ofrecen la capacidad de soportar diferentes protocolos de capa 2. Es decir, pueden soportar tráfico ATM, Ethernet, Token Ring, Frame Relay o lo que se te ocurra.
  • Son redes de alto rendimiento.
  • Son utilizadas por los proveedores de servicio precisamente por soportar todas las tecnologías que se mencionan. Es normal que en una MAN un proveedor de servicios monte su red telefónica, su red de datos y los otros servicios que ofrezca.



Redes de Área Local o LAN (Local Área Network):

Permiten la interconexión desde unas pocas hasta miles de computadoras en la misma área de trabajo como por ejemplo un edificio. Son las redes más pequeñas que abarcan de unos pocos metros a unos pocos kilómetros.

Red de área local, posee una distancia de alcance es de 10 a 100 metros.

Características:
  • Tecnología broadcast (difusión) con el medio de transmisión compartido.
  • Cableado específico instalado normalmente a propósito.
  • Capacidad de transmisión comprendida entre 1 Mbps y 1 Gbps.
  • Extensión máxima no superior a 3 km (Una FDDI puede llegar a 200 km)
  • Uso de un medio de comunicación privado.
  • La simplicidad del medio de transmisión que utiliza (cable coaxial, cables telefónicos y fibra óptica).
  • La facilidad con que se pueden efectuar cambios en el hardware y el software.
  • Gran variedad y número de dispositivos conectados.
  • Posibilidad de conexión con otras redes.



Datos interesantes

Longitud máxima para cableado estructurado:


La distancia máxima depende del tipo de cable. Los mas comunes que son UTP o STP.
La distancia máxima sería de 100 metros, una distancia mayor no garantiza buena comunicación. 


Al usar fibra óptica, siempre y cuando esta no sea sometida a esfuerzos, la distancia es ilimitada, por eso este medio es el que se usa para comunicar por canales de comunicación interoceanicos.


Los seis Subsistemas del cableado estructurado son los siguientes:  

  • Instalaciones de Acometida
  • Cuarto de Equipo
  • Cableado Vertical (Backbone)
  • Closet de Comunicaciones
  • Cableado Horizontal (Topologia de Estrella)
  • Área de Trabajo.


100 ohm UTP
800 metros voz
150 ohm STP
90 metros  Datos
Fibra óptica 62.5/125 um multimodo
2,000 metros
Fibra óptica 8.3/125 um uni - modo
3,000 metros






Nodo:


Actualmente llamamos "nodo" de una red, a cualquier punto de conexión de dicha red, normalmente un ordenador o también llamado el servidor, que tenga una especial importancia para más de un usuario, (o también llamado punto de intersección en una red). Lo correcto sería identificar a los nodos por el nombre del ordenador principal de cada red,



Token:


Un token o también llamado componente léxico es una cadena de caracteres que tiene un significado coherente en cierto lenguaje de programación.
Ejemplos de tokens podrían ser palabras clave (if, else, while, int, ...), identificadores, números, signos, o un operador de varios caracteres, (por ejemplo, :=).
Son los elementos más básicos sobre los cuales se desarrolla toda traducción de un programa,

Maquetas, topologias de red

Topologia de anillo:





Topologia de estrella:




Topologia de bus:





Topologia de doble anillo:



Topologia de árbol:




Topologia de malla:




Topologia conexa:


miércoles, 12 de febrero de 2014

Topologias de red.

El término topología se refiere a la forma en que está diseñada la red, bien físicamente(rigiéndose de algunas características en su hardware) o bien lógicamente (basándose en las características internas de su software).
La topología de red es la representación geométrica de la relación entre todos los enlaces y los dispositivos que los enlazan entre sí (habitualmente denominados nodos).
Topología de red
Topología en Malla
En una topología en malla, cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicaniente entre los dos dispositivos que conecta.
Topología en Malla
Por tanto, una red en malla completamente conectada necesita n(n-1)/2 canales fisicos para enlazar n dispositivos. Para acomodar tantos enlaces, cada dispositivo de la red debe tener suspuertos de entrada/salida (E/S).
Una malla ofrece varias ventajas sobre otras topologías de red. En primer lugar, el uso de los enlaces dedicados garantiza que cada conexión sólo debe transportar la carga de datos propia de los dispositivos conectados, eliminando el problema que surge cuando los enlaces son compartidos por varios dispositivos. En segundo lugar, una topología en malla es robusta. Si un enlace falla, no inhabilita todo el sistema.
Otra ventaja es la privacidad o la seguridad. Cuando un mensaje viaja a través de una línea dedicada, solamente lo ve el receptor adecuado. Las fronteras fisicas evitan que otros usuarios puedan tener acceso a los mensajes.
Topología en Estrella
En la topología en estrella cada dispositivo solamente tiene un enlace punto a punto dedicado con el controlador central, habitualmente llamado concentrador. Los dispositivos no están directamente enlazados entre sí.
A diferencia de la topología en malla, la topología en estrella no permite el tráfico directo de dispositivos. El controlador actúa como un intercambiador: si un dispositivo quiere enviar datos a otro, envía los datos al controlador, que los retransmite al dispositivo final.
Topología en Estrella
Una topología en estrella es más barata que una topología en malla. En una red de estrella, cada dispositivo necesita solamente un enlace y un puerto de entrada/salida para conectarse a cualquier número de dispositivos.
Este factor hace que también sea más fácil de instalar y reconfigurar. Además, es necesario instalar menos cables, y la conexión, desconexión y traslado de dispositivos afecta solamente a una conexión: la que existe entre el dispositivo y el concentrador.
Topología en Árbol
La topología en árbol es una variante de la de estrella. Como en la estrella, los nodos del árbol están conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta alconcentrador central.
Topología en Árbol
El controlador central del árbol es un concentrador activo. Un concentrador activo contiene un repetidor, es decir, un dispositivo hardware que regenera los patrones de bits recibidos antes de retransmitidos.
Retransmitir las señales de esta forma amplifica su potencia e incrementa la distancia a la que puede viajar la señal. Los concentradores secundarios pueden ser activos o pasivos. Un concentrador pasivo proporciona solamente una conexión fisica entre los dispositivos conectados.
Topología en Bus
Una topología de bus es multipunto. Un cable largo actúa como una red troncal que conecta todos los dispositivos en la red.
Topología en Bus
Los nodos se conectan al bus mediante cables de conexión (latiguillos) y sondas. Un cable de conexión es una conexión que va desde el dispositivo al cable principal. Una sonda es un conector que, o bien se conecta al cable principal, o se pincha en el cable para crear un contacto con el núcleo metálico.
Entre las ventajas de la topología de bus se incluye la sencillez de instalación. El cable troncal puede tenderse por el camino más eficiente y, después, los nodos se pueden conectar al mismo mediante líneas de conexión de longitud variable. De esta forma se puede conseguir que un bus use menos cable que una malla, una estrella o una topología en árbol.
Topología en Anillo
En una topología en anillo cada dispositivo tiene una línea de conexión dedicada y punto a punto solamente con los dos dispositivos que están a sus lados. La señal pasa a lo largo del anillo en una dirección, o de dispositivo a dispositivo, hasta que alcanza su destino. Cada dispositivo del anillo incorpora un repetidor.
Topología en Anillo
Un anillo es relativamente fácil de instalar y reconfigurar. Cada dispositivo está enlazado solamente a sus vecinos inmediatos (bien fisicos o lógicos). Para añadir o quitar dispositivos, solamente hay que mover dos conexiones.
Las únicas restricciones están relacionadas con aspectos del medio fisico y el tráfico (máxima longitud del anillo y número de dispositivos). Además, los fallos se pueden aislar de forma sencilla. Generalmente, en un anillo hay una señal en circulación continuamente.